

A NEW POLYMERIC SORBENT FOR SOLID PHASE EXTRACTION OF PHENOLS, EXPLOSIVES, BASES, AND **POLAR COMPOUNDS IN WATER** XIAOYAN WANG, GREG FRANCE, WAYNE KING, AND MICHAEL TELEPCHAK UCT,INC. 2731 BARTRAM ROAD, BRISTOL PA 19007, USA

INTRODUCTION

UCT has developed a new polymeric sorbent for solid phase extraction of a range of compounds, including acids, bases, neutrals, and even some mid-polar to polar compounds. Some of the compounds which can be extracted are often not well retained on silica-based sorbents, such as C8 and C18. This new sorbent is applicable to multiple EPA methods, including EPA method 526 (semi-volatile organic compounds), method 527 (pesticides and flame retardants), method 528 (phenols), methods 529 and 8330 (explosives), method 537 (perfluorinated alkyl acids), method 553 (benzidines and nitrogen-containing pesticides), and method 8141B (organophosphorus pesticides and triazine herbicides). The analytical performance of this new sorbent for the extraction of phenols, explosives, organophosphorus pesticides and triazine herbicides, and other compounds, including bases, polar and non-polar analytes is presented.

The SPE method using this new sorbent is simple and easy to use. It involves cartridge washing and conditioning, sample loading, cartridge drying and analyte elution with proper organic solvents. To ensure good extraction efficiency, the water sample must be de-chlorinated and the sample pH adjusted so that target analytes are in their uncharged molecular forms. It is only in the neutral form that the analytes are retained by reverse phase functionality on the polymeric sorbent. For acidic compounds, the sample pH should be adjusted to 2 units below the lowest pKa of the compounds to be extracted. For basic compounds, sample pH should be 2 units above the highest pKa of the compounds. For neutral compounds sample pH is not as critical as with acids or bases and can be extracted as received, unless one or more compounds to be extracted are sensitive under certain pH. The sample pH should be adjusted to the value at which any sensitive compounds are most stable. This will help minimize low recovery caused by analyte hydrolysis or degradation. For example, captan and flumioxazin degrade much faster under alkaline conditions: therefore the sample should be adjusted to acidic conditions to avoid analyte degradation. Some compounds hydrolyze under both alkaline and acidic condition (e.g. organophosphorus esters), thus the optimum sample pH is neutral. Knowing the chemical and physical properties of the target analytes helps reduce overall method development time.

UCT has also developed a new sample transfer line (VMFSTFR12) that fits SPE cartridges of varying sizes (1, 3, 6, 10, 15, and 25 mL). These transfer lines allow analysts to load large sample volumes onto SPE cartridges with limited analyst attendance. Another time and effort saving option is utilized by connecting a drying cartridge (ECSS15M6) directly to the end of the SPE cartridge (ECHLD156-P) using a cartridge adaptor (AD0000AS) during the elution step (when non-polar solvents are used for elution). This eliminates the need for an additional eluate drying step. A new collection rack (VMF02125) that can hold larger containers, such as 40-60 mL vials, has also been created for environmental applications where larger elution volumes are often needed.

MATERIALS

Item	Description	UCT part#
SPE cartridge	500 mg Enviro-Clean [®] HL DVB in 6 mL cartridge	ECHLD156-P
Sample transfer tube	Fits 1, 3, 6, 10, 15, and 25 mL SPE cartridges	VMFSTFR12
Drying cartridge	5 g anhydrous sodium sulfate in 6 mL cartridge	ECSS15M6
Cartridge adaptor	Fits 1, 3, 6, 10, and 15 mL cartridges	AD0000AS
SPE collection rack	Designed for 40-60 mL vials	VMF02125

..........

Solid Phase Extraction Setup for 12 Water Samples

WWW.UNITEDCHEM.COM

SPE APPLICATIONS OF VARIOUS ORGANIC COMPOUNDS IN WATER

Application 1

EPA Method 528 (Phenols, acidic compounds)

SPE procedure			
Sample pretreatment	1 L water sample, pH < 2		
Cartridge washing	3 x 3 mL dichloromethane (DCM)		
Cartridge conditioning	3 x 3 mL methanol (MeOH); 4 x 3 mL 0.05 N HCI		
Sample loading	15 mL/min		
Cartridge drying	15 min under full vacuum		
Elution with in-line drying	10 mL DCM bottle rinse; 3 mL DCM to cartridge		
Eluate evaporation	Nitrogen at 40 °C to 1 mL		

Analyte	Spiked	EPA requirement		Single-lot results		Multiple-lot results	
	(µg/L)	Recovery%	RSD%	Recovery%	RSD% (n=5)	Recovery%	RSD% (n=35)
Phenol	10	50-150	s 30	88.2	2.2	86.4	4.0
2-chlorophenol d4 (Surr)	2.5	70-130	s 20	88.7	1.6	87.3	4.7
2-chlorophenol	10	70-130	s 20	87.4	1.3	85.3	3.5
2-methylphenol	10	70-130	s 20	88.6	1.5	86.8	3.6
2-nitrophenol	10	70-130	s 20	85.6	0.8	85.5	3.8
2,4-dimethylphenol d3 (Surr)	2.5	70-130	s 20	88.5	1.4	86.9	6.6
2,4-dimethylphenol	10	70-130	s 20	88.4	1.1	85.1	6.5
2,4-dichlorophenol	10	70-130	s 20	87.4	1.3	86.5	3.8
4-chloro-3-methylphenol	10	70-130	s 20	90.4	1.0	89.5	2.9
2,4,8-trichlorophenol	10	70-130	s 20	88.3	0.6	87.8	3.2
2,4-dinitrophenol	10	70-130	s 20	103.2	7.6	108.4	5.6
4-nitrophenol	10	70-130	s 20	96.5	1.2	97.4	4.2
2-methyl-4,6-dinitrophenol	10	70-130	s 20	92.9	2.5	97.9	6.7
2,4,6-tribromophenol (Surr)	5	60-130	s 20	88.7	0.9	89.5	4.3
Pentachlorophenol	10	70-130	s 20	94.3	1.1	95.8	4.7

Application 2 EPA Method 529 (explosives, neutral compounds)

SPE procedure			
Sample pretreatment 1 L water sample, pH as received			
Cartridge washing	3 x 5 mL ethyl acetate (EtOAc)		
Cartridge conditioning 3 x 5 mL MeOH; 2 x 10 mL DI water			
Sample loading	15 mL/min		
Cartridge drying	10 min under full vacuum		
Elution with in-line drying	5 mL EtOAc bottle rinse; 5 mL EtOAc to cartridge		
Eluate evaporation	Nitrogen at 40 °C to 1 mL		

Analyte	Spiked	EPA requirement		Single-lot results		Multiple-lot results	
	(µg/L)	Recovery%	RSD%	Recovery%	RSD% (n=5)	Recovery%	RSD% (n=25)
Nitrobenzene d5 Surr	5	70-130	s 20	92.4	3.5	88.9	4.3
Nitrobenzene	5	70-130	s 20	86.8	2.7	88.8	4.6
2-Nitrotoluene	5	70-130	s 20	87.6	3.6	89.1	4.7
3-Nétrotoluene	5	70-130	\$ 20	86.6	3.6	87.7	4.6
4-Nétrotoluene	5	70-130	≤ 20	84.4	3.3	87.2	4.9
1,3-Dinitrobenzene	5	70-130	\$20	102.4	5.3	99.7	4.2
2,6-Dinitrotoluene	5	70-130	\$ 20	98.2	5.7	97.3	4.8
2,4-Dinitrotoluene	5	70-130	\$ 20	91.2	5.3	92.9	4.2
1,3,5-Trinitrobenzene	5	70-130	\$ 20	100.0	9.1	100.4	5.5
2,4,6-Trinitrotoluene	5	70-130	≤20	103.0	6.3	100.9	5.3
RDX	5	70-130	\$ 20	107.0	1.7	111.1	5.8
4-Amino-2,6-Dinitrotoluene	5	70-130	\$ 20	100.1	7.5	99.6	5.8
3,5-Dinitroaniline	5	70-130	\$ 20	104.3	5.6	103.6	6.3
2-Amino-4,6-Dinitrotoluene	5	70-130	\$ 20	103.3	5.2	105.7	5.0
Tetryl	5	70-130	\$ 20	102.2	3.7	105.4	4.7

Spiked (ug/L)

108.7

104.2

101.5

106.8

107.8

Annlication 3 EPA Method 8141B (organophosphorus pesticides and

triazine herbicides, neutral compounds)

5	Analyte		
ample pretreatment	1 L water sample, at neutral pH		
artridge washing	3 x 5 mL DCM	o,o,o-Triethyl phosphorothioate	
88		Thionazin	
artridge conditioning	2 x 5 mL MeOH; 2 x 5 mL DI water	Sulfotep	
ample loading	15 mL/min	Phorate	
artridge drying	10 min under full vacuum	Dimethoate	
	5 mL acetone bottle rinse:	Simazine	
lution	5 mL DCM bottle rinse;	Atrazine	
	5 mL DCM to cartridge	Disulfoton	
uate drying	15-20 g sodium sulfate in 15 mL fritted	Methyl parathion	
	reservoir	Malathion	
uate evaporation	Nitrogen at 40 °C to 0.5 mL	Parathion	
olvent exchange	Solvent exchange to n-hexane (2 mL)	Ethion	
		Famphur	

Application 4

SPE procedure		
Sample pretreatment	1 L water sample, pH 7	
Cartridge washing	3 x 5 mL DCM	
Cartridge conditioning	3 x 5 mL MeOH; 10 mL DI water	
Sample loading	15 mL/min	
Cartridge drying	10 min under full vacuum	
Elution with in-line drying	2 x 5 mL DCM	
Eluate evaporation	Nitrogen at 40 °C to 1 mL	

Abundance
2000000
2000000
8700000
2000000
2500000
0.400000
2300000
2200000
2100000
2000000
1900000
1000000
1200000
1000000
1500000
1400000
1000000
1200000
1100000
1000000
900000
000000
200000
600000
500000
400000
300000
design and the second

CONCLUSIONS

- · A novel and versatile polymeric sorbent effectively retains a variety range of organic compounds (acidic, neutral, and basic)
- Cross-linked polymeric sorbent with over 5 times greater capacity than silica-based sorbents Sorbent is stable for samples with pH ranged from 0 to 14

	oorbein
٠	Straight
٠	Unique
	minimu

· Newly designed sample transfer tubes for extracting large samples and collection racks for holding elution vials up to 60 mL eases time burden on analysts

Other applications (bases, polar and non-polar compounds)

Analyte	Chemical properties	Spiked (µg/L)	Recovery%	RSD% (n=4)
o-Toluidine	Basic, pKa 4.48	5	94.8	4.2
Quinoline	Basic, pKa 4.50	5	112.1	2.1
Dicrotophos	Polar, LogP -0.24	20	96.0	2.0
Dimethipin	Polar, LogP -1.53	5	105.3	3.1
Butylated hydroxyanisole	Non-polar, LogP 3.06	5	102.5	0.5
Diethyl phthalate	Non-polar, LogP 2.42	20	96.7	0.6
Methyl parathion	Non-polar, LogP 2.8	20	97.4	2.2
Carbaryl	Non-polar, LogP 2.36	20	101.3	3.5
Malathion	Non-polar, LogP 2.36	20	101.9	1.0
Captan	Non-polar, LogP 2.35	20	100.6	1.8
Nitrofen	Non-polar, LogP 4.62	20	93.7	1.9
Ethion	Non-polar, LogP 3.93	20	99.9	1.4
4,4'-DDT	Non-polar, LogP 6.46	20	96.1	1.8
Captafol	Non-polar, LogP 3.95	20	103.2	3.2
Bis(2-ethylhexyl) phthalate	Non-polar, LogP 4.89	20	96.5	1.7

REPRESENTATIVE CHROMATOGRAMS (APPLICATION #3)

Blank Sample

Sample fortified with 10 ug/L target analytes

Peak list: 1, 0, 0, 0, Triethyl phosphorothioate: 2, Thiopazin: 3, Sulfoten: 4, Phorate: 5, Dimethoate: 6. Simazine; 7. Atrazine; 8. Disulfoton; 9. Methyl parathion; 10. Malathion; 11. Parathion; 12. Ethior

- tforward SPE extraction protocols with excellent precision and accuracy
- polymeric structure contributed to consistent analytical performance with Im lot-to-lot variations